
Universal condition for critical percolation thresholds of kagomé-like lattices

Robert M. Ziff* and Hang Gu†

Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan,
Ann Arbor, Michigan 48109-2136, USA

�Received 3 December 2008; published 18 February 2009�

Lattices that can be represented in a kagomé-like form are shown to satisfy a universal percolation criticality
condition, expressed as a relation between P3, the probability that all three vertices in the triangle connect, and
P0, the probability that none connect. A linear approximation for P3�P0� is derived and appears to provide a
rigorous upper bound for critical thresholds. A numerically determined relation for P3�P0� gives thresholds for
the kagomé, site-bond honeycomb, �3-122� lattice, and “stack-of-triangle” lattices that compare favorably with
numerical results.
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Percolation is the study of long-range connectivity in ran-
dom systems. The value of the site or bond occupation prob-
ability where that connectivity first appears is the percolation
threshold pc �1�. Finding exact and approximate pc’s for per-
colating systems on various lattices is a long-standing prob-
lem that continues to receive much attention today �e.g.,
�2–20��.

All known exact pc’s are for two-dimensional lattices that
can be represented as arrays of triangular units self-dual in
the triangle-triangle ��-�� transformation, as illustrated in
Fig. 1 for the case of a simple triangular array. When this
duality is satisfied, pc is determined by the simple condition
�6,21�

P3� = P0�, �1�

where P3� is the probability that all three vertices of the tri-
angular unit connect, P0� is the probability that none connect,
and the prime indicates a �-�-dual system. The shaded tri-
angular units can contain any collection of bonds, including
correlated bonds which can mimic site percolation, connect-
ing the three vertices.

If, for example, the triangular unit is simply a triangle of
three bonds, each occupied with probability p, then P0�=q3

and P3�= p3+3p2q, where q=1− p, and �1� yields the bond
criticality condition for the triangular lattice as q3= p3

+3p2q which has the solution pc=2 sin � /18=0.347 296 36
�22�. Likewise, taking a star of three bonds as the basic unit
gives P0�=q3+3q2p and P3�= p3, and �1� yields q3+3q2p= p3

or pc=1−2 sin � /18=0.652 703 65 for the honeycomb lat-
tice �22�. Equation �1� has been applied to many other lat-
tices that satisfy �-� duality, including “martini” �6,7,15�,
bow tie �5,23�, and “stack-of-triangle” �20� lattices, to find
exact pc’s.

However, when �-� duality is not satisfied, then Eq. �1�
cannot be used to find pc. For example, the �-� transforma-
tion for the kagomé lattice is shown in Fig. 2, and it can be
seen that, while the lattice can be broken up into nontouching
shaded triangular units, the �-� transformation gives a dif-

ferent lattice altogether, and so the self-duality condition is
not satisfied. Likewise, site percolation on the honeycomb
lattice, which can be represented as bond percolation on the
kagomé lattice with all three bonds correlated �see Fig. 3�a��,
is also non-self-dual.

Nevertheless, for any system that can be broken up into
identical disjoint isotropic triangular units, pc must be deter-
mined by a unique condition that depends only upon the
connection probabilities P0 and P3 of the triangular units. In
this Rapid Communication we consider lattices of the
kagomé form, as shown in Fig. 4�d�, and investigate the cor-
responding relation between P3 and P0. The kagomé form
includes several unsolved lattices of interest as discussed be-
low. While we cannot find exact thresholds for these lattices
�indeed, they are likely insolvable�, we can make very pre-
cise predictions on their values and unify their study.

First we consider the “double honeycomb” lattice, shown
in Fig. 4�b�, which is of the kagomé form and is the one
exactly soluble lattice of this form. It can be constructed by
replacing each bond of a honeycomb lattice �Fig. 4�a�� by
two bonds in series, which implies that its pc is the square
root of the pc for the honeycomb lattice,

p� = �1 − 2 sin �/18 = 0.807 900 76. �2�

For this lattice, which we indicate by a star, we have

P0
* = q�3 + 3q�2p� = 0.096 528 61, �3�
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FIG. 1. �Color online� �-� duality for lattices in simple trian-
gular array. �Left-hand side� Shaded triangles represent any collec-
tion of internal bonds. �Right-hand� Result of �-� transformation
where dark triangles are the dual triangles, and form the same ar-
rangement as on the left-hand side but rotated 180°.
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P3
* = p�3 = 0.527 319 77, �4�

where q�=1− p�. Note, Eq. �1� is far from being satisfied.
Next, generalizing the considerations in �4�, we develop

an approximate linear relation between P3 and P0 for all
lattices of the kagomé form, that is exact at the point
�P

0
*, P

3
*�. Consider the systems shown in Fig. 4. In �c� we

replace all the up-stars of �b� with general shaded triangular
units with a given net connectivity P0 and P3. This produces
a generalized “martini” configuration, which falls under the
general triangular class of Fig. 1, with connectivities �as fol-
lows from the diagram in �c��

P0� = P0 + 3P2�q�2 + 2q�p�� + P3�q�3 + 3q�2p�� ,

P3� = P3p�3. �5�

Equation �1� then yields the exact criticality condition for
system �c�,

P3 = P3
* + b�P0 − P0

*� , �6�

where b=1 / �2− p��=0.838 856 34. As a final step, we hy-
pothesize that Eq. �6� represents an approximation to pc of
the “full” kagomé system with both up and down triangles
shown in Fig. 4�d�. The justification is that in going from �b�
to �c�, we replaced one set of stars by shaded triangles satis-

fying �6�, and the system remained at criticality. Now we
replace the second identical set of stars by the same shaded
triangles, and we expect that the system remains close to
criticality.

In Table I we compare the predictions of the linear rela-
tion �6� with the numerical results for several systems. The
pc�linear� estimates are found by putting the corresponding
expressions for P0 and P3 into Eq. �6� and solving numeri-
cally for p. For the kagomé lattice, we use

P0 = q3, P3 = p3 + 3p2q . �7�

For the �3,122� lattice �shown, for example, in Ref. �4�� we
use

P0 = 1 − 3p2 − 3p3 + 6p7/2 + 3p4 − 4p9/2,

P3 = 3p7/2 − 2p9/2. �8�

For site percolation on the honeycomb lattice, pc= P3=1
− P0, and Eq. �6� yields explicitly pc=1 / �p�2�3− p���
=0.698 914 02. The agreement between pc�linear� and nu-
merical results is especially good for systems where P0 is
near P0

�.
To test the behavior of P3�P0� over a more complete range

of values, we carried out simulations using the gradient per-
colation method �25,26� on general kagomé systems. We
fixed P0=0, 0.5, 0.1, 0.15, and 0.25 and allowed P3 to vary

FIG. 2. �Color online� �Left-hand side� Shaded triangles in the
generalized kagomé configuration. �Right-hand side� Result of �-�
transformation, showing that this system is not self-dual.

(b)(a)

FIG. 3. �Color online� �a� Site percolation on the honeycomb
lattice is equivalent to bond percolation on the kagomé lattice
�shaded triangles� with all three bonds occupied, or all vacant. �b�
Basic unit for analyzing site-bond percolation on the honeycomb
lattice in the generalized kagomé framework.

FIG. 4. �Color online� Steps in the derivation of the linear rela-
tion, Eq. �6�: �a� The honeycomb lattice, �b� double-honeycomb
forms a kagomé class of lattice, �c� all up-stars replaced by trian-
gular units, forming martini configuration satisfying �-� duality,
�d� remaining stars replaced by triangular units, forming the
kagomé configuration.

ROBERT M. ZIFF AND HANG GU PHYSICAL REVIEW E 79, 020102�R� �2009�

RAPID COMMUNICATIONS

020102-2



linearly in the vertical direction, with the estimate of the
critical value found as the fraction of P3 triangles in the
frontier. We considered systems of different gradients and
extrapolated the estimates to infinity to find the values of P3
given in Table II.

In Fig. 5 we plot the difference between the measured P3
and the predictions of Eq. �6� as a function of P0 for these
systems. The first derivative at P0= P

0
* appears to be zero,

which would imply that Eq. �6� represents the exact linear
term in the behavior of P3 vs P0− P

0
*. The numerical data

also suggests that �6� gives an upper bound for P3�P0� for all
P0. Fitting the data to a cubic equation, assuming that
P3��P0

��=b exactly, we find

P3 = P3
* + b�P0 − P0

*� + c�P0 − P0
*�2 + d�P0 − P0

*�3 �9�

with c=−0.059 87 and d=−0.1038. This curve fits all the
data points P3 within �10−5. The results of using this equa-
tion to predict pc are shown in Table I under the heading
“cubic,” and all are within the expected error of about

�10−5, and more accurate as P0 approaches P0
�. For the

kagomé case, our prediction pc=0.524 405 16 compares fa-
vorably to the recent precise result 0.524 404 99�2� of Ref.
�14� �which appeared after our analysis was complete� and
the previous value 0.524 4053�3� �27�.

We next apply our general relation for P3 vs P0 to get
very accurate pc’s for a class of lattices in which each tri-
angle of the kagomé arrangement contains a “stack-of-
triangles” as shown in Fig. 6. In Ref. �20� the similar stack-
of-triangles were studied in a regular triangular arrangement,
and explicit expressions for P0 and P3 were found by exact
enumeration for these three subnets. We can use those same
expressions to analyze the subnets on the kagomé lattice as
well. For subnet 2, we have �20�

P0 = q9 + 9pq8 + 33p2q7 + 54p3q6 + 21p4q5 + 3p5q4,

P3 = 9p4q5 + 57p5q4 + 63p6q3 + 33p7q2 + 9p8q + p9 �10�

with q=1− p. For subnets 3 and 4, see Ref. �20�.

TABLE I. Results of pc and P0, P2, and P3 for various systems. P0, P2, and P3 are calculated using
pc�cubic�.

System pc�linear�a pc�cubic�b pc�numerical� P0 P2 P3

Double honeycomb 0.80790076 0.09652861 0.12538387 0.52731977

�3, 122� 0.74042118c 0.74042081 0.74042195�80�e 0.10045606 0.12297685 0.53061341

Kagomé 0.52440877c,d 0.52440516 0.52440499�2�f 0.10757501 0.11861544 0.53657867

Honeycomb �site� 0.69891402 0.69702981 0.69704024�4�f 0.30297019 0 0.69702981

� subnet 0.628961�2�g 0.09652861 0.12538387 0.52731977

Subnet 4 0.62536437 0.62536431 0.625365�3�g 0.09823481 0.12433811 0.52875085

Subnet 3 0.61933204 0.61933180 0.6193296�10�g 0.10016607 0.12315455 0.53037028

Subnet 2 0.60086322 0.60086202 0.6008624�10�g 0.10402522 0.12078995 0.53360494

aDetermined by Eq. �6�.
bDetermined by Eq. �9�.
cReference �4�.
dReference �24�.

eReference �9�.
fReference �14�.
gThis work.

TABLE II. Results of simulations for P3 and P2= �1− P0

− P3� /3 for general kagomé systems as a function of P0; values are
accurate to about 10−6. These data are plotted in Fig. 5. Also shown
are the equivalent site-bond probabilities ps and pb calculated from
Eqs. �12�. The third row is the double-honeycomb system and the
final row represents site percolation on the honeycomb lattice �14�.

P0 P2 P3 pb ps

0 0.1846972 0.4459084

0.05 0.1539432 0.4881704

0.0965286 0.1253839 0.5273198 0.6527036 1

0.1 0.1232560 0.5302320 0.6583497 0.9926153

0.15 0.0926739 0.5719784 0.7405771 0.8974788

0.2 0.0622208 0.6133375 0.8242773 0.8195766

0.25 0.0319205 0.6542385 0.9091230 0.7547482

0.3029598 0 0.6970402 1 0.6970402
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FIG. 5. �Color online� Plot of P3− �P
3
*+b�P0− P0

��� vs P0− P
0
*

using data of Table II, showing deviations from Eq. �6�. Points are
numerical data, and the curve is a plot of Eq. �9�. The locations of
some specific systems are also shown.
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We insert these expressions for P0 and P3 into Eqs. �6�
and �9� to find the linear and cubic estimates for pc. The
resulting values are shown in Table I, along with results of
numerical simulations. For subnets 3 and 4, the predictions
of �6� and especially �9� are expected to be very accurate,
because P0 is so close to P

0
*, and indeed the precision of the

numerical simulations is not high enough to see the differ-
ence between these predictions and the actual values.

As seen in Table I, the quantities P0, P2, and P3 evidently
approach the double-honeycomb values P

0
*, P

2
*, and P

3
* as

the mesh of the subnet gets finer. This is because the trian-
gular units in the fine-mesh limit can be effectively repre-
sented by a star of three bonds, with the central site in this
star representing the supercritical “infinite cluster” in the
central region of the triangular units �20�. The set of these
stars creates the double-honeycomb lattice, so the Pi are the
same as the double-honeycomb values. Furthermore, the
probability P�,corner of connecting from a corner to the cen-
tral infinite cluster at criticality must be identical to the
double-honeycomb bond threshold, p�. Thus, we can find pc
for the infinite net by running simulations of growing clus-
ters from the corner of a single large triangular system, and
adjusting p until P�,corner�p�= p�. This yields pc���
=0.628 961�2�.

Finally, we note that a realization of the general kagomé
system for P0� P

0
* is given by site-bond percolation on the

honeycomb lattice, as represented in Fig. 3�a�. For the site-
bond basic unit of Fig. 3�b�, we have

P0 = 1 − ps + ps��1 − �pb�3 + 3�1 − �pb�2�pb� ,

P3 = pspb
3/2 �11�

which can be inverted to yield

pb = � 3P3

2P3 − P0 + 1
�2

, ps = P3/pb
3/2. �12�

In Table II, we list the values of pb and ps that correspond to
the measured values of P3�P0�. We can also put Eq. �11� into
Eq. �6� and simplify using Eqs. �3� and �4� to find an ap-
proximate expression for the critical line on the ps-pb plane,

ps =
p�2

pb�1 − B��pb − p���
, �13�

where B= p� / �3− p�2�. We can improve upon this relation by
using the cubic function of P3�P0� given in Eq. �9�; this adds
the additional terms C��pb− p��2+D��pb− p��3 to the above
formula, where C=9p�2�2− p��3 / �3− p�2�3c=−0.046 0682
and D=−0.016 81.

In conclusion, we have shown how the notion of a unique
relation between P3 and P0, first studied in the context of
self-dual systems �6,21�, extends to the non-self-dual
kagomé configuration. The approximate linear expression we
found, Eq. �6�, appears to be exact to first order, and the
simulation results shown in Fig. 5 suggest that that expres-
sion provides upper bounds to pc for these systems. We con-
jecture that this is indeed the case. The numerically refined
cubic relation of Eq. �9� allows very accurate thresholds to
be predicted for a wide variety of systems, and an accurate
expression for the criticality condition of site-bond percola-
tion on the honeycomb lattice to be written.
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FIG. 6. Lattices with subnets 2, 3, and 4 �left to right�.
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